DOCUMENT RESUME

ED 427 692 IR 019 243

AUTHOR Clyde, Stephen W.; Hirschi, Gregory W.

TITLE Interactive Display of High-Resolution Images on the World
Wide Web.

PUB DATE 1998-11-00

NOTE 7p.; In: WebNet 98 World Conference of the WWW, Internet,

and Intranet Proceedings (3rd, Orlando, FL, November 7-12,
1998); see IR 019 231.

PUB TYPE Reports - Descriptive (141) -- Speeches/Meeting Papers (150)
EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Computer Interfaces; Computer Oriented Programs; Computer

Software Development; *Computer System Design; Evaluation
Criteria; Higher Education; Information Management;
Information Technology; Interaction; User Needs
(Information); *Visual Aids; *World Wide Web

IDENTIFIERS *Client Server Computing Systems; *Digital Imagery;
Interactive Systems; Utah State University

ABSTRACT

Viewing high-resclution images on the World Wide Web at a
level of detail necessary for collaborative research is still a problem
today, given the Internet's current bandwidth limitations and its ever
increasing network traffic. ImageEyes is an interactive display tool being
developed at Utah State University that addresses this problem by integrating
caching, compression, and transmission techniques and performing global
optimization across these techniques. It is an interactive image display
facility that allows Web users to explore high-resolution images in near
real-time without upgrading their computers or networks. Although much of
ImageEyes is based on existing technology, it employs several innovations,
including a three-dimensional, hierarchical cache and a data striping
technique that tolerates lossy transmission without significant degradation
to the user's view. This paper describes: the ImageEyes architecture,
including Web components and protocols, client software, user interface,
client's cache, and server's image processor; an operational overview;
performance evaluation; and related work. A figure presents a high-level view
of ImageEyes' architecture. (Author/AEF)

LA 2222222222222ttt i 2 a0 it 22 2 i iR iR RRtRRRRtsRR R S

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
L2222 222222222222t 2222222222222 2222222222222 2R R R 2R 8 84

ERIC

Aruitoxt provided by Eic:

Interactive Display of High-resolution
Images on the World-Wide Web

Stephen W. Clyde

«~PERMISSION TO REPRODUCE THIS Utah State University, Computer Science Department U.S, DEPARTIENT OF EDUCATION
Offi i Im
MATERIAL HAS BEEN GRANTED BY Logan, UT 84322-4205 USA EDUGATIONAL RESOURCES INFORMATION
il: CENTER (ERIC)
G.H. Marks Email: swe@stevec.cs.usu.edu O This documant has been reproduced as
- — received from the person or organization
. . originating it.
— Gregory W. Hirschi O Minor changes have been made to
: Utah State University, Computer Science Department improve reproduction quality.

TO THE EDUCATIONAL RESOURCES Logan, UT 84322-4205 USA ® Points of view or opinions stated in this

10).” il: i i . d 1 do not necessarily represent
|NF0RMAT|ON CENTER (ER) Email ghlrschl@acm ore OZ?;::%‘ER?position or policy.

Abstract: Viewing high-resolution images on the World-Wide Web at a level of detail
necessary for collaborative research is a still a problem today, given the Internet's current
bandwidth limitations and its ever increasing network traffic. ImageEyes is an interactive
display tool being developed at Utah State University that addresses this problem by
integrating caching, compression, and transmission techniques and performing global
optimization across these techniques. Although much of ImageEyes is based on existing
technology, it employs several innovations, including a three-dimensional, hierarchical cache
and a data striping technique that tolerates lossy transmission without significant degradation
to the user's view.

ED 427 692

1 Introduction

The advent and popularity of the World-Wide Web (Web) has created an effective medium for
scientists to collaborate among themselves and disseminate information to the public. Applications that require
ad-hoc inspection of high-resolution images, however, are still not feasible because of current bandwidth
limitations and increasing network traffic. One such application involves on-line examination of x-ray images.
To be useful, doctors must be able to examine any part of an x-ray image in as much detail as the original film
would allow. Ideally, when accessing an x-ray, a doctor should first see a high-level view of the whole image
and then, in near real-time, be able to zoom and pan through the image, examining minute details like hair-line
fractures. Other applications include on-line study of biological specimens, historical documents, artwork, and
satellite photographs.

Most of the images on the Web today range in size from one to several hundred kilobytes. Although
such images can fill a standard computer screen, they do not provide enough information for inspection of fine
details, like bone fractures. Simply using higher resolution images, which can be several hundred megabytes in
size, does not solve the problem. Current Web protocols are based on full-image transfers, irrespective of
transmission speed, the resolution of the user’s screen, and the availability of local storage [HTTP 1998]. Not
only can full transfers require an unacceptable amount of time, but users may not have enough local storage
space to hold the image data. In addition, why should the local system even try to retrieve and store that much
data when only a small fraction of it can be displayed at any given time.

One possible approach is to cut a high-resolution image into smaller views that focus on predetermined
areas of interest within the picture. For example, a high-resolution image of a plant might be broken down into
separate views that focus on leaf venation, leaf arrangement, and its reproductive parts. Although this approach
keeps the data requirements and transfer times within reasonable limits, it severely constrains the user’s ability
to freely explore the original image. For collaborative research, it is critical that users be able to explore areas
of an image that may not have been previously considered interesting. Furthermore, extracting predefined
views from high-resolution images takes significant effort and requires those who prepare the views to have an
in-depth knowledge of the subject area.

Many of the restrictions and decision-making problems of the prior approach can be eliminated by
fully and automatically partitioning the original image into sub-images at some zoom factor and then repeating

1G9y

SERIC ~ BEST COPY AVAILABLE

,

Q

ERIC

Aruitoxt provided by Eic:

this process for each sub-image until all available detail is fully exposed. This would result in a complete
hierarchy of views. Each level in the hierarchy would represent the full image at a specific zoom factor. Zoom
operations would be implemented as hyper-links between views on different levels, whereas pan operations
would be implemented as hyper-links between views on the same level. Although this approach allows
exploration of the entire image, it has several serious drawbacks. One problem is a potential for excessive data
transfer, even when the user's Web browser has a local cache. This problem stems from the way browsers treat
image files as autonomous entities. They cannot reuse bits and pieces of previous images. For example, if a
user is looking at the edge of a leaf and then zooms out to see the whole leaf, the browser requests the transfer
of a whole new image, even though a portion of that image was just on the screen. Another problem is that
extensive zooming and panning of an image would eventually fill the browser’s cache and thereby render the
cache useless as soon as the user leaves the image. Finally, since the zoom and pan operations are implemented
with hyper-links, the backtracking feature (the Back button) available in most browsers would cause the
operations to be played in reverse, which can initiate additional unnecessary data transfers.

ImageEyes is an interactive image display facility that will allow Web users to explore high-resolution
images in near real-time without upgrading their computers or networks. This paper describes an overview of
its design and operation and the status of work in progress.

2 ImageEyes' Architecture

Figure 1 shows a high-level view of the ImageEyes' architecture. The boxes labeled Web Server, Web
Browser, and Fast CGI Interface and the interconnecting lines represent existing Web components and
protocols [Connelly 1998, HTTP 1998, NCSA 1998, W3C 1998]. ImageEyes will use this existing technology
for displaying entry-points and initiating image viewing sessions. The remaining boxes and ellipses represent
the ImageEyes server and client. At the core of their design is an integrated strategy for global optimization,
across its image processing, compression, communication, caching, and display techniques. The basic idea is to
use observed conditions in one area to tune performance in another. For example, noisy transmission might
cause ImageEyes to alter how it packages and compresses individual blocks of data prior to transmission.

The ImageEyes client software is responsible for interacting with the user, sending image requests to
the server, coordinating responses, managing a local cache, and displaying the current view. We have

- — FastCGl '
Web Server <€) o Tne:setrg(c?ael
UDPIIP S
Y 'High-R;cm,
) Image
ImageEyes Server e

‘ - l‘ File /O
mage Processor Handler
£ —]]
t]:: Communicator lerackager :Compressor H
requests responses J—
A v Hierarchical
i i | h
Communicator :rAssembler - Decompressor j . iage Cache
7*V——— Request . ,“ Response | Cache |
Web ,ﬂ_)l Generator Processor | Manager |

Browser :

User Interface

ImageEyes Client

Figure 1: High -level view of ImageEyes' Architecture

BEST COPY AVAILABLE

Q

ERIC

Aruitoxt provided by Eic:

implemented version 1.0 of the client in C™ as a stand-alone application running on HP-UX® with Motif 1.2°.
Future implementations include plug-ins for Netscape® and Internet Explorer® and a Java applet. Because some
of these variations are intended to be downloaded at run-time, our approach is to keep the client software as
lightweight as possible. For this reason, all decision-making and optimization logic resides in the server.

The client's user interface, displays a view of the image and allows the user to navigate through the
image with various zoom and pan operations. The request generator optimizes the navigational requests and
send them to the server via a communicator. Each request includes information about the contents of the
client's cache and current network conditions. The server uses this information to decide the minimum amount
of data that has to be sent back and to optimize the packaging and compression of that data.

The client's cache is a hierarchical scheme consisting of logical layers, each representing the entire
image for a different zoom factor. At any given time, a layer may contain no data, disjoint blocks of data, or a
complete image. The top layer, which corresponds to a /x-zoom factor, is always completely in memory.
Lower layers have higher zoom factors, and therefore, represent the image at higher resolutions. The zoom
factors can increase either linearly (e.g., 2x, 3x, 4x, etc.) or exponentially (e.g., 2x, 4x, 8x, etc.) Space for new
data is allocated from a free list using a first-fit algorithm. Cache data blocks are replaced using a modified
Least Recently Used (LRU) algorithm. Like standard LRU algorithms [Tanenbaum 1992], ImageEyes'
replacement algorithm uses a queue structure to track the order in which cache blocks were last used. However,
instead of using the first-fit block from the queue, the algorithm tries to preserve blocks containing data that
overlaps with the requested region in the current operation. It does so by placing "in-use" locks on all such
blocks. In finding space for a new data block, the replacement algorithm first releases and coalesces blocks
without locks. After this process, if there is still insufficient free space for the new data, it splits locked blocks
based on their potential value to the current operation. Blocks at the same layer as the current operation and
with the smallest overlapping region are chosen first. When a locked block is split, the overlapping region is
placed in a new block and marked as "in-use". The remaining portion is released and coalesced with other free
blocks.

The client's cache can reduce the amount of data that is needed for zoom and pan requests in two ways.
First, when a user moves to a new region and there are pieces of that region in the cache at the desired level or
lower (higher zoom factor), then those pieces do not need to be transmitted. Their display can be computed
directly from the cache. Second, when cache contains data at a higher layer for the requested region, the client
only needs delta values, which are the difference between the aggregate color values of the higher layer and the
exact color values for the requested layer. In many cases, these delta values fall into a small range, e.g. -15 to
+16, and therefore, can be packaged and compressed into fewer transmission packets.

The server's image processor is responsible for interpreting an incoming request and deciding the
minimum data needed to satisfy that request. First, depending on the contents of the client's cache, it breaks the
request up into non-overlapping sub-regions. Then, for each sub-region, it chooses how to package and
compress the data. More specifically, it decides whether to send delta values or absolutes values. If the image
processor decides to send delta values, it also determines how they should be striped, i.e. broken up in to
smaller incremental values. Sending striped delta values allows for lossy image transmission and, in many
cases, actually requires fewer transmission packets than sending absolute value. Sending striped delta values
also results in a nice fade-in effect on the user's display, which gives the illusion of a quicker response time.
Sending absolute values, however, is more appropriate when the delta values cover a large range and do not fit
a normal curve.

The ImageEyes server is designed to support different storage formats for the high resolution images
through format-specific file I/O handlers. At this point, we have only implemented a file I/O handler for Raw
PPM, but plan to build handlers for JPEG, GIF, and TIFF in the near future.

3 Operational Overview

With the stand-alone ImageEyes client, the user starts a viewing session by executing the client
program with parameters that specify a host machine and the name of an image. The client connects directly to
the ImageEyes server running on the host machine and sends it an open request. The server returns some
startup parameters directly to the client. With a web-based ImageEyes client, the user simply clicks on an
ImageEyes link in their web browser. This causes an open request to be sent to the ImageEyes server via a
FastCGl interface [Fig. 1] The ImageEyes server initiates a new session and returns the startup parameters to
the web server, which in turn, sends them to the browser. The browser uses this information to activate the

Q

ERIC

Aruitoxt provided by Eic:

client software. From that point on, the client software interacts directly with the ImageEyes server just like the
stand-alone version.

Consider, as an example, a user who starts a viewing session for an image of a plant against a plain
beige background. Although there are very few sharp edges in the image and the contrast is low, it contains
sufficient detail to show hairs on the edges of the leaves. After opening the session, the server sends the client
an initial view of the entire image at a /x-zoom factor. The client displays this data and stores it in the top layer
of the cache. Next, the user zooms into the top-left corner of the image. This causes a request to be sent to the
server for this region at a desired zoom factor, say 4x. The request also tells the server that the client's cache
only contains the top-layer data. The server interprets the request, reads the necessary data from the stored
images, and decides on the best processing strategy. Because of the low contrast and lack of sharp edges, it
would likely choose to use delta values, striped into increments ranging from -7 to +8. Assuming that the
network conditions are relatively good, it would also choose to use standard compression parameters and follow
a transmission protocol that tolerates a small amount of loss before retransmission requests are issued.

Just after the client sends the request to the server, it starts computing the display based on the
information in the cache. So, in this case, the user will inmediately see a course-grain blow up of the top-left
corner. The first 4x4 group of pixels will have the same initial value as the top layer's first pixel; the next 4x4
group will have the same initial value as the top layer's second pixel; and so on. The client can receive the
response packets from the server at any time and in any order, as long as the request hasn't been superceded by
a subsequent request. Since the packets contain delta values, the client simply adds them to the display and
updates the cache. To the user, it appears as if the image is coming into focus.

Suppose the user now decides to pan a quarter of the display width to the right. The client creates and
sends a new request to the server. The display is again updated based on the information in the cache. This
time, the left portion of the image that is to be displayed is already in the cache at the correct layer. The right
portion of the image is filled in with a course-grain blow up of the top layer in a fashion similar to the previous
request. Because the request included the contents of the client’s cache, the server knows that it only needs to
send delta values for the right portion of the image. The server computes these delta values relative to the top
layer and sends them to the client. The right portion of the image is filled in as the client receives the packets.

The user makes a final request to zoom in to the image. The display is updated from the contents of
the cache so as much detail as possible is showing. Some portions of the image may contain data at the second
layer while other portions may contain data at the top layer. Suppose that the client doesn’t have enough free
space in the cache to hold all of the data coming from the server. Some of the cache contents will be replaced
based on the algorithm discussed earlier. The least important blocks are removed or split and the cache is
updated with the new data.

4 Performance Evaluation

We will evaluate the performance of ImageEyes from several different perspectives. First, we will
examine it on its own merits by testing both normal and worst-case scenarios for various kinds of images. The
scenarios will consist of sequences of zoom and pan operations. The images will vary in size, number of
colors, regularity (repetition of patterns within an image), and clarity. For each scenario and image, we will
record the requests generated by the client and the sizes of the data blocks returned by the server. We will not
measure transmission time, since it depends on other variables, like bandwidth and current network traffic.

Second, we will compare ImageEyes to several existing techniques, including non-interlaced images,
interlaced images, predefined views, and fully partitioned images. Since the zoom and pan operations do not
apply to all of these techniques in the same way, we will rate the relative effectiveness from a user's
perspective. More specifically, we will look at the following issues:

. How much data is required before the user gets a glimpse of the image?

. How much data is required before the user has a complete overview of the image?
. How much storage space is required on the local system to view the image?

. What kinds of delays occur between zoom and pan requests?

. Was backtracking natural and effective?

5 Related Work

Much research has been done over the past few years on topics related to the ImageEyes project,
including caching schemes, image compression, and image transmission. However, most of the work has
focused on a specific area, like caching, and not on global optimization across multiple areas. Caching schemes
have been extensively researched for operating systems and their properties are relatively well understood in
this context [Tanenbaum 1992]. However, there are some significant differences between caching data
dominated by sequential access patterns and caching images when there are three degrees of freedom in the
movement through the data. Although the principle of locality of reference [Tanenbaum 1992] still applies, it is
manifested in different ways. Nevertheless, common replacement algorithms, like LRU and NRU, and
allocation algorithms, like first-fit and best-fit, can be adapted.

The areas of image compression and communication are also mature. However, current research
efforts deal primarily with compression and transmission of entire images and therefore don't take into account
cached data. Danskin, et al., describe an approach to image transmission that tolerates lost data with minimal
distortion [Danskin et al. 1995]. Surveys of image compression techniques can be found in /ntroduction to
Data Compression [Sayood 1996] and Data Compression: Methods and Theory [Storer 1988].

The most similar product to ImageEyes is one marketed by Hewlett Packard under the name OpenPix
Software Suite” [OpenPix 1998]. This viewer is based on the FlashPIX™ file format [Lee 1998], which stores
pre-defined views at different zoom levels. The OpenPix viewer is similar to the ImageEyes client in that the
user can interact with a high-resolution image and avoid transmission of the entire image at one time.
However, OpenPix seems to lack the kind of global optimization that is at the heart of ImageEyes' design. HP's
application allows users to zoom in and out, but only at the layers stored in the FlashPix file. It also appears
that OpenPix does not take advantage of client-side caching techniques. Zooming in and then back out results
in retransmission of the original image, which leads us to believe that the data transferred from the server to the
client are absolute values and not relative values based on a client's cache.

6 Summary

Because Image Eyes uses an integrated solution for caching, compression, communication, and display
and because it works with existing Web technology, we believe that it will provide an effective means for
viewing high-resolution images on the Web. For typical images and usage scenarios, ImageEyes should
dramatically reduce the amount of information that needs to be transmitted, and thereby, provide near real-time
image zooming and panning. Its worst case behavior should be at least as good as the full-partitioning approach
described in the introduction.

To date, we have implemented version 1.0 of the server and client. This version includes the
hierarchical caching and lossy data transmission schemes as well as an intelligent data compression technique.
We are currently collecting test data to evaluate and optimize the performance of the ImageEyes system.

6 References

[Connolly 1998]

[Danskin et al. 1995]

[Sayood 1996]

[Storer 1988]

[Tanenbaum 1992]
[OpenPix 1998]

[Lee 1998]

[HTTP 1998]

[NCSA 1998]

[W3C 1998]

Connolly, Dan (downloaded April 1998). HyperText Markup Language. World Wide Wide
Consortium. http://www.w3.org/pub/WW W/MarkUp/

Danskin, J., G. Davis, and X. Song (1995). Fast Lossy Internet Image Transmission. ACM
Multimedia, San Francisco, CA, November 1995.
http://www.cs.dartmouth.edu/~jmd/decs/xsong/fliit/paper.html

Sayood, Khalid (1996). Introduction to Data Compression. San Francisco: Morgan Kaufmann
Publishers, 1996. ISBN 1-55860-346-8

Storer, J.A. (1988). Data Compression: Methods and Theory, Computer Science Press, Rockville,
MD, ISBN: 0-88175-161-8.

Tanenbaum, A. S. (1992). Modern Operating Systems, Prentice Hall, 1992
OpenPix (downloaded April 1998). OpenPix Internet Imaging. http://www.image.hp.com/about.html

Lee, Ho John (downloaded April 1998). Too Many Pixels, Not Enough Bandwidth.
http://www.image.hp.com/webguide.html

HTTP Working Group (downloaded April 1998). Hypertext Transfer Protocol -- HTTP/1.1. Internet
Engineering Task Force. http://www.ics.uci.edu/pub/ietf/http/

NSCA (downloaded April 1998). Common Gatway Interface. The National Center for
Supercomputing Applications, University of Illinois at Urbana-Champaign.
http://hoohoo.ncsa.uiuc.edu/cgi/

W3C (downloaded April 1998). The World-Wide Web Consortium. http://www.w3.org/pub/WWW

U.S. Department of Education E n Ic
Office of Educational Research and Improvement (OERI)

S AN
2,

{y\\ i \,‘
\/:‘A/ Educational Resources Information Center (ERIC)

%

National Library of Education (NLE)

NOTICE

REPRODUCTION BASIS

This document is covered by a signed “Reproduction Release

Q (Blanket) form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,
does not require a “Specific Document” Release form.

D This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may
be reproduced by ERIC without a signed Reproduction Release form

(either “Specific Document” or “Blanket”).

EFF-089 (9/97)

